
	
		
							
					

											
							
								
							
						

								 	

									
						 	The Four Hundred
	Subscribe
	Media Kit
	Contributors
	About Us
	Contact

						

			
					 Menu
										 	The Four Hundred
	Subscribe
	Media Kit
	Contributors
	About Us
	Contact

								

		

		
			
			 				
		 						
							
								
																	

								Guru: Creating PDF Documents With Python

								
									July 27, 2020
									
										Mike Larsen									
								

																I’m often asked to create reports for my business partners. The format of the report depends on who made the request. If the financial team made the request, I may produce an Excel file. The CEO may want to report quarterly sales to their shareholders. In that case, I may produce a PDF using the company letterhead.

In a prior article, I showed how to create Excel files using Db2 tables. Now I’m going to show how to create PDF documents using Db2 tables.

This story contains code, which you can download here.

I always start by making sure all Python packages are up to date on my IBM i. I use ACS (Access Client Solutions) to update and install Python packages as shown in Figure 1.

Figure 1. Install and update Python packages (partial listing).

Next, I install the packages I’m using in my Python script. I’m using ibm_db to connect to a Db2 table and fpdf to generate the PDF. To install these packages, I execute the commands in Figure 2 using an SSH terminal like Putty or Mobaxterm.

pip3 install ibm_db
pip3 install fpdf

Figure 2. Install Python packages.

Now that all packages are installed and up to date, I’m ready to write some code!

I start by importing packages I’m using in my script (Figure 3). In addition to using ibm_db and fpdf, I’m also using the datetime module so I can print the date and time in the footer of the report.

from fpdf import FPDF
import ibm_db_dbi as db2
from datetime import datetime

Figure 3. Import packages.

I’m printing the date and time in the format of month, day, year, hour, minute, second as shown in Figure 4.

datetime object containing current date and time
now = datetime.now()
dt_string = now.strftime("%m/%d/%Y %H:%M:%S")

Figure 4. Format the date.

The fpdf package allows me to set up a header (Figure 5) and footer (Figure 6) for my report. Once I define them in my script, they’re executed automatically for each new page of my report. I’ll show each of these and explain what they’re doing.

- - - -
first line of the header

Logo
fpdf.image(name, x = None, y = None, w = 0, h = 0, type = '', link = '')
 self.image('/home/MLARSEN/logo_sample.png', 10, 8, 20, 20)

Arial bold 15
 self.set_font('Arial', 'B', 15)

fpdf.cell(w, h = 0, txt = '', border = 0, ln = 0,
align = '', fill = False, link = '')
Title
#
width = 40, height = 10, border = 0 (no border),
ln = 0 (0: to the right,
1: to the beginning of the next line,
2: below), align = Center

self.cell(40, 10, 'Employee listing', 0, 0, 'C')

- - - -
second line of the header
 self.set_font('Arial','U', 14.0)

 self.cell(30, 10, txt = 'First name', border = 1, ln = 0)
 self.cell(12, 10, txt = 'MI', border = 1, ln = 0)
 self.cell(30, 10, txt = 'Last name', border = 1, ln = 0)
 self.cell(30, 10, txt = 'Department', border = 1, ln = 0)
 self.cell(30, 10, txt = 'Phone no.', border = 1, ln = 0)
 self.cell(30, 10, txt = 'Job title', border = 1, ln = 0)

Figure 5. Report header.

I have two lines in my header. On the first line, I have a logo that is pulled in from a file in the IFS. I set the font to Arial 15 and make the text bold. Then I specify the tile of the report, Employee listing, and center it on the page.

The second line of the header contains my column headings to match the columns I’m loading from a Db2 table. The report in this example is producing an employee listing from a sample table on my IBM i.

Position at 1.5 cm from bottom
 self.set_y(-15)

Arial italic 8
 self.set_font('Arial', 'I', 8)

Page number
 self.cell(0, 10, 'Page ' + str(self.page_no()) + '/{nb}', 0, 0, 'C')

date/time
 self.cell(0, 10, dt_string, 0, 0, 'R')

Figure 6. Report footer.

For the footer, I define where on the page it should print and what font I’m using. I also print the page number, date, and time. The page number is printed at the center of the page and the date/time is printed at the right.

With the header and footer in place, I’m ready to start loading the report with data from the employee table. I start by connecting to the database, then I define and execute a cursor (Figure 7).

conn = db2.connect()

cursor = conn.cursor()

cursor.execute("Select FirstNme, MidInit, LastName, WorkDept, PhoneNo, Job "
 " From Sample.Employee ")

Figure 7. Retrieve data from Employee table.

I loop through my cursor and start printing the employees to the report (Figure 8). To make this a little more interesting, I change the font color to red when an employee has a title of MANAGER and I also use a blue font color for the first employee printed. I did this for illustrative purposes to show some additional features of fpdf.

for row in cursor:

 # color can either be RGB as I did below, or you can use hex:
 #
 # pdf.set_text_color(*hex2dec('#8B6914'))

 if row[5].strip() == 'MANAGER':
 pdf.set_text_color(253, 7, 7) # red
 elif lineNumber == 0:
 pdf.set_text_color(0, 0, 255) # blue
 else:
 pdf.set_text_color(0, 0, 0) # black

 pdf.cell(30, 10, txt = row[0], border = 1, ln = 0)
 pdf.cell(12, 10, txt = row[1], border = 1, ln = 0)
 pdf.cell(30, 10, txt = row[2], border = 1, ln = 0)
 pdf.cell(30, 10, txt = row[3], border = 1, ln = 0)
 pdf.cell(30, 10, txt = row[4], border = 1, ln = 0)
 pdf.cell(30, 10, txt = row[5], border = 1, ln = 0)

Figure 8. Print detail lines.

I created a summary line at the end of the report that gives a total of the number of employees printed. I also added a digital signature to the end of the report. The signature is pulled from a file in the IFS and I used the x and y coordinates to make it print on the right side of the report.

pdf.set_text_color(0, 0, 0) # black

pdf.cell(50, 10, txt = 'Number of Employees', border = 0, ln = 0)
pdf.cell(12, 10, txt = str(lineNumber), border = 0, ln = 0)

create a line break. default is 'mm' - millimeters

pdf.ln(10)

get the current x and y coordinates

x = pdf.get_x() + 100 # +100 moves it over horizontally to the right
y = pdf.get_y()

fpdf.image(name, x = None, y = None, w = 0, h = 0, type = '', link = '')

pdf.image('/home/MLARSEN/mike_larsen_signature.png', x, y, 50, 15)

Figure 9. Print summary line.

The last piece of code creates the PDF document in the IFS (Figure 10).

'F' = file
pdf.output("createPdf3c.pdf", 'F')

Figure 10. Create the PDF in the IFS.

I run the Python script in an SSH terminal (Figure 11) and open the PDF to review the report. I’m only showing the first and last pages of the report (Figures 12 and 13).

python3 createPdf3c.py

Figure 11. Run the Python script.

Figure 12. First page of Employee report.

Figure 13. Last page of Employee report.

With a short Python script, I built a nice report that lives in the IFS. From here, I could email it out to whoever needs it. Hopefully, this example will get you started creating your own PDF’s using Python. The complete code for the Python script used in this article is available for download.

Mike Larsen is a Project Manager and Senior developer at Central Park Data Systems and has been working with IBM i systems for over 20 years. He specializes in RPG, CL, and SQL and recently has been working with Python. Current projects have given Mike the opportunity to generate PDFs and Excel files using Python. He has also built processes to call RPG programs from Python and execute Python scripts from RPG.

RELATED STORY

Guru: Creating Excel Spreadsheets With Python

Share this:
	Reddit
	Facebook
	LinkedIn
	Twitter
	Email
	

															
							Tags: Tags: 400guru, Access Client Solutions, ACS, CL, DB2, FHG, Four Hundred Guru, IBM i, IFS, PDF, Python, RPG, SQL, SSH

																						
									
										Sponsored by

										Meridian IT
									

									
										Tight IT budget, but modernization is calling your name?

Here’s how savvy businesses are boosting their aging systems. Memory upgrades unleash hidden speed, cloud integration gives you elastic muscle, and managed services whisper sweet nothings to your wallet. Intrigued? Dive into the secrets of modernizing and unlock the future, without breaking the bank.

Begin Your Journey

Share this:
	Reddit
	Facebook
	LinkedIn
	Twitter
	Email
	

									

								

																												

							
								Kisco Extends Two Factor Authentication To Green Screens
								Some Insight Into Utility Pricing On Entry Power Iron
							

							
								
				4 thoughts on “Guru: Creating PDF Documents With Python”

			
				
				
						Kent Grizzell says:		

		
		
			July 27, 2020 at 10:38 am		

		Am I overlooking the download link?

		Reply

				

					
				
				
						Mike says:		

		
		
			August 10, 2020 at 11:07 am		

		Kent, the link to download the code is there now.

		Reply

				

				

	
				
				
						Reynaldo Dandreb Medilla says:		

		
		
			August 2, 2020 at 9:53 am		

		great share Mike, thanks

		Reply

				

				
	
				
				
						Ajay says:		

		
		
			August 5, 2020 at 9:53 am		

		Where can i find the source code?

		Reply

				

				

		

	
		
							Leave a Reply					Cancel reply
				

						
				
									
									
					
					
							

		

		
		

		

							

						

									

				
	
		
				
					Search for:
					
					
				

			
	

				
				
					TFH Volume: 30 Issue: 44				
			

		This Issue Sponsored By
	TL Ashford
	Profound Logic Software
	RPG & DB2 Summit
	Raz-Lee Security
	Kisco Information Systems

			
				
					
						
					
				
			

		Table of Contents
	Power Systems Slump Is Not As Bad As It Looks
	Some Insight Into Utility Pricing On Entry Power Iron
	Guru: Creating PDF Documents With Python
	Kisco Extends Two Factor Authentication To Green Screens
	IBM i PTF Guide, Volume 22, Number 30

			
				
									
			

			Content archive
				The Four Hundred
	Four Hundred Stuff
	Four Hundred Guru

		

			

		

			
											
		
		Recent Posts

			
					PUB400: Your Free IBM i Playground
									
	
					Focusing On People: Strengthening Cybersecurity In IBM Power Systems
									
	
					More Critical Security Vulns Reported In IBM i Components
									
	
					Some Clarity – Well Actually Less – On IBM i Subscriptions
									
	
					IBM i PTF Guide, Volume 26, Number 9
									
	
					The Cloud Is Part Of The IBM i Present, And A Bigger Part Of Its Future
									
	
					No Matter Where You Are Going, Migrate Live Helps You Get There
									
	
					The Power Of Community At LISUG
									
	
					As I See It: Doctor AI
									
	
					IBM i PTF Guide, Volume 26, Number 8
									

										

			
											Subscribe
			To get news from IT Jungle sent to your inbox every week, subscribe to our newsletter.

										

			
											Pages

				About Us
	Contact
	Contributors
	Four Hundred Monitor
	IBM i PTF Guide
	Media Kit
	Subscribe

											

			
											Search

				
					Search for:
					
					
				

			
								

			Copyright © 2024 IT Jungle

		

	

	
			
		

		
		

		
		

		
		

		

		
	
				

		
		

			
	